
International Journal of Computer Applications Technology and Research
Volume 3– Issue 4, 254 - 262, 2014, ISSN: 2319–8656

www.ijcat.com 254

A Web Page Change Detection System For Selected
Zone Using Tree Comparison Technique

Sandesh D. Jain
Computer Science and Technology

Department of Technology
Shivaji University

Kolhapur, Maharashtra
India

H.P.Khandagale

Computer Science and Technology
Department of Technology

Shivaji University
Kolhapur, Maharashtra

India

Abstract: This paper describes Web Page Change Detection System for Selected Zone based on tree comparison mechanism
corresponding to HTML pages. Two sub trees for the selected zone will be generated one for initial and another for changed version of
Web Document. The Generalized Tree Comparison Algorithm is developed to compare these sub trees for selected zone. This
algorithm uses the properties of HTML page and heuristics as a node of the trees. This proposed system will include functionalities
and interfaces for processing user request, fetching web pages from the internet allowing users to select zone in web pages to monitor.
This method performs well and is able to detect the structural as well as content level changes even at the minute level and helps to
locate minor or major changes within the selected zone of document.

Keywords: Change Monitoring, Generalized Tree Comparison, Zone Selection of Web Page, Web Page Change Detection, Web Page
Monitoring, Web Mining, Node Comparison, HTML, XML.

1. INTRODUCTION
Internet forms the important form of Information and
Communication exchange. Everyone using internet is
interested in a very specific type of data and it can be said that
user visits some of these website regularly so as to track if
some information has change overnight. If the web page
changes too often, then it is cumbersome for the user to visit
these sites frequently. For example, a user want to know about
the latest recruitment in particular field related to particular
location in the recent time. In this case, the user wants to be
notified of the changes related to various recruitment details
present on different web pages. In general, the ability to
specify changes to this particular location in the document
called here as zone of the document and notify it to user in
different ways which will be useful for reducing the
inefficient navigation. Due to rapid changes in the content of
the web pages it has become very necessary to develop a Web
Page Detection System which can detect these changes in the
selected zone of the Web page in minimum browsing time.

There are basically four types of changes.

i. Structural Changes: It occurs when some HTML tags

have been added or deleted in the web pages. Structural
Elements like <div> <header> <meta> <article>
and their attributes are used.

ii. Content Changes: It occurs when the content or
information of the web page has been added, deleted or
updated. Content Categories like Metadata, Flow,
Sectioning, Heading, Phrasing etc. are used.

iii. Presentation Changes: It occurs when the design or
appearances of the web page have been changed but the

content or the information have not been changed. The
tags of ,<i>,<p>,<h1>,<u>,,<strike> etc are
used.

iv. Behavioral Changes: Behavioral changes have been
occurred when the active components such as applets,
scripts, etc. have been changed [2].

A web page change detection system helps to reduce the
browsing time of the user and allows the user to find the items
in web page which change frequently. Change detection
systems should provide the possibility of specifying the
changes the user is interested in, to select the region of the
document of interest, the items inside the region whose
changes have to be monitored, and conditions on the type of
changes which must be detected. Systems detecting changes
on HTML pages with fixed structure are not able to satisfy
these kinds of user needs since the page regions considered
depend on the user’s request. Current techniques for detecting
document differences are computationally expensive and
unable to focus on the portion of the page that is considered
interesting for the user. Our technique represents the
document as a tree and permits the user to focus on specific
portions of it e.g. sub-trees. In particular the aim of our
technique is that of efficiently monitor changes on small
portion of a web page for instance of a job in recruitment
process.

The main objective is to find the zone in the downloaded
entire modified web page most similar to that selected by the
user. This comparison process will be performed by
generating the trees for selected zone of old web page and
newly downloaded web page [4].

International Journal of Computer Applications Technology and Research
Volume 3– Issue 4, 254 - 262, 2014, ISSN: 2319–8656

www.ijcat.com 255

There are various types of properties which should be
considered for detecting the changes in different versions of
the web page like speed, accuracy, complexity, storage space,
effective version management etc. [3]

2. Literature Survey
Number of research papers was found that handled the design
of efficient algorithms for detecting changes in Web pages.

1) Document Tree based Approach [1] detects the structural
and content changes. This Tree based approach is good for
comparing the nodes of both the tree as old web page tree
and modified web page tree. It gives the relevancy to the
web pages and notifies the user about detecting the
changes. For detecting structural change document tree is
constructed and then signature values assigned to the root
nodes and child nodes of the old and new web pages are
compared. And for detecting content change first
calculates the ASCII value of each character and then it is
divided by those particular characters which are occurred
in web page only once. Then it determines the text code
for the different versions of the page and compares them.
This algorithm defines the good comparison study for the
different algorithms and provides simple method for
detecting changes. Limitation of this paper is that
comparison becomes longer if numbers of nodes are
increased. So it’s difficult to compare signature for each
and every child node.

2) Optimized Hungarian algorithm [4] introduced three
running time optimizations that control the operations of
the Hungarian by considering time and accuracy
analysis. This algorithm focuses on finding the most
similar subtree, finding out of order tags or unclosed
tags, edit scripting to find minimum edge weight
monitoring for bipartite graph. Three measures for
detecting changes are also considered which are
intersect(percentage of similar words) ,typedist (position
of elements),attdist(relative weight of similar attributes).
This algorithm also defines that performance is inversely
proportional to the depth of tree. Limitation of this
algorithm is that running time may be large.

3) BIODIFF [8] algorithm covers some limitation of X-
Diff algorithm. Unlike X-DIFF algorithm, BIODIFF
designed for genomic and proteomic data. It outperforms
app. 1.5 – 6 times faster than X-DIFF for different
datasets. But one limitation of this algorithm is that If a
database has more nodes that require min-cost max-flow
matching, the improvement of Bio Diff is less as
compared to X DiFF. Another limitation is that it takes
more time to assign different matching types to the nodes
in XML tree.

4) XML TREE DIFF [9] algorithm presents support for
change control in the context of the Xyleme project that
is investigating dynamic warehouses capable of storing
massive volume of XML data. This algorithm is efficient
in speed and memory space. It uses operations such as
change node, delete node and insert node. Delta is
constructed to find the matching of nodes between two
trees. The use of XML specificities in algorithm leads to
significant improvements. Drawback of this algorithm is
that there is some loss of quality. Another drawback is
that there is need of gathering more statistics about the
size of deltas and in particular for real web data.

5) CH-DIFF and CX-DIFF [10] are developed by the
Webvigil, a system that automates the change detection
and timely notification of HTML/XML pages based on

user specified changes of interest. CH-DIFF detects
changes to various components such as links, images,
keywords, phrases and any change using Longest
Common Subsequence (LCS). But using LCS will be
computationally expensive. CX-DIFF algorithm consists
of steps like object extraction and signature computation,
filtering of unique inserts/deletes and finding the
common order subsequence between the leaf nodes of
the given trees. Assorted and Linked Monitoring is also
introduced in the paper. Immediate, Best-effort, Interval
based, Interactive notifications are provided to the user.
Drawback of this paper is that expensive computation
and sentinels or user requests can be overloaded on the
single server.

6) Level Order Traversal [11] is another form of the
breadth first traversal. It includes document tree
construction, document tree encoding and tree matching
(based upon the concept of R.M.S. value of the content),
for the detection of structural changes and content
changes. Parameters used in this algorithm are node id,
child node, parent node, level, tag name, content value or
RMS value (sum of multiply the position of the character
with its ASCII value). It has linear time complexity
because it traverses only the changed portion of the tree
rather than the whole tree and hence saves the time. It
also extracts effectively the changed content from
different versions of a web page. It is simple, less cost,
and understandable and can reduce the network traffic by
using HTTP metadata. It can successfully retrieve the
summary but not the complete content of the newly
created page which is insufficient information for the
user.

7) Hashing based [12] saves computation time by limiting
the similarity computations between two versions of a
web page to nodes having the same HTML tag type, and
by hashing the web page in order to provide direct access
to node information. To speed up the process of web
change detection system a hashing based technique is
used for direct lookup of subtree node information during
comparisons, and eliminated irrelevant node comparisons
by limiting them to nodes of the same type. This
algorithm is also applied to RSS (really simple
syndication) feeds change detection for delivering
regularly changing web content, such as news. Original
and enhanced approaches are introduced to improve the
comparisons. This algorithm suffers from one limitation
that inability to detect changes when root tag is changed.
Multithreading is used for improving the performance.
This algorithm can be further implemented on dynamic
web pages and can also be defined in XML file as future
work.

8) Tree traversing [13] is developed for detecting the
structural as well as content change. This algorithm is
divided into two parts tree development and change
detection. The proposed algorithm used bottom up
approach for assigning hash value to each leaf node and
tag value to the non-leaf nodes. This algorithm include
extracting the tags from html code of the page, assigning
node number to each node, finding multiple child of
node, calculating the hash value and tag value by
assigning hash function, comparing tags. This algorithm
is based on depth first search. This algorithm is simple to
understand and it saves the browsing time. But the
drawback of this algorithm is that performance is not
defined when depth or levels of the tree is increased.

9) An existing product is Copernic Tracker [5] that seems
to be the most mature software aimed at monitoring Web

International Journal of Computer Applications Technology and Research
Volume 3– Issue 4, 254 - 262, 2014, ISSN: 2319–8656

www.ijcat.com 256

sites. The software can track changes in the text and
images and monitors for the presence of specific text.
The system however does not allow for specifying how
much emphasis to place on monitoring different aspects
of the Web page and does not provide a utility for
monitoring a specific region of the web page. This
product does not reveal performance data that discusses
speed or accuracy.

10) A Website-Watcher [6] which includes the ability to
monitor password protected web pages. The system
offers limited freedom for selecting a zone to monitor
and lacks a proper user interface to show the changes.
This system also does not provide objective performance
data other than subjective user reviews.

11) WYSIGOT [7] which is a commercial application that
detects changes between HTML pages. This system has
to be installed on the local machine and the granularity of
change detection is at page level.

3. General Design
3.1 Overview
Web page change detection system for selected zone based on
tree comparison mechanism corresponding to HTML pages. It
uses generalized tree Comparison Algorithm to compare the
trees. Algorithm uses the properties of HTML page and
heuristics as a node of the trees. This proposed system
includes functionalities and interfaces for processing user
request, fetching web page from the internet and allowing
users to select zone in a web page to monitor. In addition to
above this proposal highlights changes on the web page of
selected zone being monitored.

3.2 General Architecture

Figure 1. Architecture of Web page Change Detection

System for selected Zone.

The figure 1 depicts Architecture of the working model of
Web Page Change Detection System.
The step by step working model of architecture is represented
as follows:
Step 1. Fetching of old Web Page and Generation of Tree
The web crawler will fetch the old HTML web page which
user wants to monitor and the tree will be generated for
complete web page.

Step 2. Selection of Zone of old Web Page [14][15].
The system provides the zone selector tool to allow user
to select zone to monitor. For the selected zone the user
will specify which portion of web page to monitor and
the period of time between two successive monitoring
tasks.

Step 3. Generation of Tree for the selected zone of
Webpage

We have develop tree builder which will be
responsible for converting of web page to tree data
structure in which node contain tag and their attribute,
while leaves contain their text content. The process of
building the tree is described in section 3.3.1. The data
will be generated from the tree generated for old HTML
web page. The tree for the selected zone of the Web Page
is also stored.

Step 4. Fetching of Modified web page.
After completion of time slot which is set by user, the
browser will download the web page which is to be
monitored.

Step 5. Generation of modified tree for fetched web
page.
The system will generate the tree for complete modified
web page using Tree Builder.

Step 6. Checking the sub tree for change in content
attribute & layout.
Let T1’ be a abstract general tree generated by user
corresponding to the zone selected by user and T2 tree
will be for the modified web page. In the comparator
module, comparator will find the most similar zone in the
new web page. In this comparison T1’ the subtree of
selected zone of Old Web page is searched in T2 Tree of
Modified Web Page and it outputs corresponding
changes in subtree of T2.
 In Comparator module we are using the following
modules
i) Text Compare Module for comparing content i.e.
HTML text.
ii) Attribute Compare Module that will compare
HTML attributes.

Step 7. Change detection and report generation:-
Presentation and Storage module stores the result &
reports after every monitoring period using the Inverse
Tree Builder. Output Center will notify user about the
detected changes.

3.3 Modules
3.3.1 Tree Builder
We have developed tree builder which will be responsible for
converting of web page to tree data structure in which node
contain tag and their attribute, while leaves contain their text
content. The process of building the tree is as shown in figure
2.

Figure 2. The Tree Builder Sub-Module

This will consist of four modules:-

Input Unit

Fetch Unit

Web Crawler Selection of
Zone in Web

Page

HTML to XML
Converter

Tree Builder
for Selected

Zone Comparator

T1’

T2
Presentation
and Storage

Module

Inverse Tree
Builder

Highlighted
Output of Web

page

International Journal of Computer Applications Technology and Research
Volume 3– Issue 4, 254 - 262, 2014, ISSN: 2319–8656

www.ijcat.com 257

i) Filter
ii) Re-Arranger
iii) HTML to XML Converter
iv) Tree Builder

i) Filter:-It filters the HTML document from all
irrelevant content like comments and non HTML
content e.g. Script, applet etc.

ii) Re-Arranger:-It will re-arrange HTML document to
fix out of order tags
e.g.<p><a>text1text2text3text4</p
>.The tags <a> and are terminated out of
order which results in an improper tree
representation of this code.

iii) HTML to XML converter: It will convert the html
webpage to XML webpage.

iv) Tree Builder:-This step will generate trees from the
processed HTML pages.

The example of the Tree builder can be explained as follows

Original HTML Page

Converted XML Page

The Figure 3 represents the structure of the document we just
created. This document is based on document object model
which is describes in 3.3.2. An XML document has a single
root element which contains the document’s entire element.

Figure 3. Tree structure of an XML document

In Figure 3 three kinds of nodes are observed in the DOM
tree. They are element, text, and attribute nodes. Text nodes
are leaf nodes with one value. Attribute nodes are non-leaf
nodes, but they have two labels name and value. According to
the DOM specification, element nodes and text nodes are
ordered while attribute nodes are unordered.

3.3.3.2 Pseudo code of Tree generation
 The Tree Generation Pseudo code is as follows

Tree generation Pseudo code

1. Read Xml document into XmlNode

2. Generate the modifiedTreeNode

3. Add XmlNode to the collection of tree Nodes

4. Check the type of XmlNode

 4.1. Processing instruction or Xml declaration Set
modifiedTreeNode Text=”<?” +

 XmlNode Name and XmlNode Text

 4.2. IF element set modifiedTreeNode Text = "<" +
xmlNode Name +">"

 4.3. Attribute Set modifiedTreeNode Text =
"ATTRIBUTE: " + xmlNode Name

 4.4. Text and CDATA Set modifiedTreeN ode Text =
xmlNode Value

 4.5. Comment Set modifiedTreeNode Text ="<!-
"+xmlNode Value+"— >"

5. Read attribute collection

6. For each attribute Go to step 1

7. Read ChildNodes Collection

8. For each ChildNodes Go to step 1

3.3.2 Document Object Model
Definition 1 (Document tree): A document tree is a tuple
T=<N, p, r, l, t, a> where

(1) N is the set of nodes of the tree,
(2) p is the parent function associating each node (except
the root r) of the tree with its parent,
(3) r is the distinguished root of T ,
(4) l is a labeling function from leaf (T) to ∑ା
(5) t is a typing function from N to ߬ and
(6) a is an attribute function from N to A* ∑∗

Thus, a document tree is an unordered tree whose nodes
(elements) are characterized by their markup type and the

<html>
<head>
<title>Dept. of Tech</title>
</head>
<! This is comment>
<body bgcolor=skyblue>
<h1> Dept. of Tech </h1>
<h2>Shivaji University </h2>
</body>
</html>

International Journal of Computer Applications Technology and Research
Volume 3– Issue 4, 254 - 262, 2014, ISSN: 2319–8656

www.ijcat.com 258

associated set of attribute-value pairs. Leaf nodes have
associated the actual textual content of the document.
Given a document tree T , whose root is r, and a node en
of T, we denote with T(en) the sub-tree of T rooted at en.
However, to be suitable for a change detection tools, this
model should be extended by associating more
information to internal nodes of the tree. We define two
functions characterizing an element w.r.t. the whole
document tree, type (en) and w(en). If r, e2, . . . , en is the
path from the root r to the element en, type (en) =t(r) t(e2)
…. t(en) whereas w(en)={s|s is a word(substring
separated by blank to the other substring) contained in
l(e) e ߳ leaf (T (en))}. We also define a (en) as the set of
attributes associated to en. Essentially w (en) is a set of
words contained in the various text strings associated to
the leaves of the sub-tree rooted at en, and type(n) is the
concatenation of type label in the path starting from the
root of the tree and ending in en, i.e. the complete type of
the element [14].

3.3.3 Zone Selection Tool
User first input the Web Page and then selects the zone of his
interest. After selection of zone, the Tree is generated for Web
Page and positions are assigned to all the nodes of entire tree
starting from root node of tree. Positions are nothing but it is
relationship between parent and child element of tree. The
positions are assigned using AssignPosition algorithm. In
addition to that, tree for selected zone i.e. Tz is prepared. Now
text of Root of Tz is compared in the tree of Old Web Page.
When search is found the position of that node i.e. selected
zone’s node in the Old Tree T1, it’s position is recorded in the
position variable Pos.

3.3.3.1 Pseudo code of Zone Selection

Positioning (AssignPosition)

1. If tree node T is root node, then assign index number to
tag of T

2. Else, concatenate tag of parent node P and the index
number of T

3. Assign the concatenation to the tag of T
4. Recursively call AssignPosition on every child node

The steps of execution of assign position is described using
Figure 4

Figure 4. Typical Tree for Assigning Position.

In Step1, first node traversed is the node T1. It has no parent
node. Hence, the root node T1 is assigned position {0}. In
Step2, the next node traversed is the node T2. It has parent
T1. Hence it is assigned the position {0\0}, which indicates,
the 1st child node under the parent node. In Step3,the node T3
is similarly assigned the value {0\1} . In Step4, the node T4 is
assigned the position {0\1\0} and T5 is assigned {0\1\1}.

3.3.3.2 Pseudo code of retrieving the position from text
(GetPosByText)
Retrieving the position from text (GetPosByText)

1. Compare given text with text of treenode T1
2. If text matches, then return the position from tag property
3. Else, recursively call GetPosByText on each child node

International Journal of Computer Applications Technology and Research
Volume 3– Issue 4, 254 - 262, 2014, ISSN: 2319–8656

www.ijcat.com 259

Figure 5. Typical tree for GetPosByText

Steps of execution of GetPosByText are described using
Figure 5.
The node with text “T3” is to be searched. In Step1, the root
node T1 is compared with “T3”. It does not match the given
text. Hence it is skipped.
 In Step2, the next node T2 is then compared with the same
procedure. It also does not match the given text “T3”. Hence
this node is also bypassed.
In Step3, the next node T3 is then compared. This node
matches the given text “T3”. This ends the search and node
T3 is returned.
3.3.3.3 Pseudo code for Zone selection

1. Prepare a sub tree for selected zone from the root

node T of selected zone T1(Tz)

2. Retrieve the position of the selected zone’s root

node i.e T1(Tz) in the tree of Old Web Page

3. Save the position in a temporary variable Pos

4. Assign positions to the tree of Modified Web Page

using AssignPosition algorithm.

5. Traverse T1 from root and find T1(Tz) using

position “pos” from the tree of Old Web Page

6. Traverse T2 from root and find T2(Tz) using

position “pos” from the tree of Modified Web Page

7. Compare the tree nodes T1(Tz) and T2(Tz) using

Generalize tree comparison.

Here T1(Tz) and T2(Tz) are treated as root nodes and
generalized comparison starts comparison and find the
changes in Modified Web Page for selected zone i.e. T1(Tz).
The steps of execution of zone selection are described using
Figure 6.

Figure 6. Tree For Zone Selection.

In Step1, the user selects the zone. Then the main
tree (with the positioning) is selected and the position of the
root node of selected zone is recorded. The figure 6 shows the
selected zone containing the nodes T3, T4, T5. Here the root
node of selected zone is node T3. Hence the position {0\1} is
recorded.

In Step2, the Next, the node at the recorded position
i.e. at the position {0\1} is searched in the tree of Modified
web page.

 In Step3, using the tree comparison both the sub
trees are compared. T3 matches with node T3, T4 matches
with node T4.

 In Step4 whenever a mismatch is found, the change
is recorded. The node T5 does not match with the node at
same position i.e. the node T6. This change is then recorded.

The stepwise execution of change detection of selected zone
is described using typical trees of Old Web page and Modified
Web page as shown in figure 7, 8,9,10.

International Journal of Computer Applications Technology and Research
Volume 3– Issue 4, 254 - 262, 2014, ISSN: 2319–8656

www.ijcat.com 260

Figure 7. Typical tree of Old Web Page.

Figure 8. Typical tree of Modified Web page

Figure 9. Assigned positions to the tree

For inputted Old Web page, users selects zone and its Sub tree
is shown in Figure 10

Figure 10. Tree for Selected Zone

Now T1(Tz) is find i.e (h5) in T1 using GetPostBy(Text). It
selects text “<h5>” and searches this text in tree of Old Web
Page. Searching starts from the root node i.e. “#document”
then “#<html>.” …….so on the from left to right. It locate the
position of text “<h5>” in T1 tree i.e. position of <h5> i.e.
{0/0/1/2} . Now it Save the position of <h5>i.e. {<0\0\1\2>}
in variable Pos. Now Modified Page is inputted and it’s tree
is given in Figure 8 Positions are assigned to tree T1 are
shown in Figure 9. Using variable Pos, search selected zone’s
node in T2 tree i.e. T2(Tz)=Pos. Now, applying Generalized
tree comparison algorithm By using T1(Tz)-- <h5>----<xyz>
and T2(Tz)----- <h5> ----- <xyz1>, Change detected in xyz
and xyz1.

3.3.4 Comparator
The Comparator has the task of performing the bulk of the
change detection process. To perform this, an algorithm is
developed for generalized tree comparison algorithm. This
algorithm uses trees generated from Tree Builder of HTML
pages and detects the changes automatically.

 For the generalized tree comparison algorithm,
the inputs are T1’ and T2 two abstract general trees generated
by the Tree Builder module discussed earlier. They
correspond to the selected zone of Old Web Page and to the
Modified Web Page. Now the Comparator finds the most
similar sub tree as that of selected zone in the modified web
page .Then these two trees are compared. When comparison is
finished, it outputs changes in T2 tree as content change,
attribute change.

 Our Comparator matches each node of selected
zone in the Old version i.e. T1’ with its corresponding MSST
node in the Modified version i.e.T2. Then the entire search
space will be explored to detect changes incurring high
execution time. This is a tree to tree correction algorithm by
defining the ordered mapping between trees. This algorithm
gives the best possible matching between two trees but with a
run time of O(n2 h4) where n= max(n1,n2) h= max (h1,h2) ,
h1=height of T1 and h2= height of T2 [20].

3.3.4.1 Pseudo code of Tree Comparison
1. Load T1’ and T2

2. Count the nodes of selected zone of T1’ and MSST of T2

3. Assign lowest value to n

4. Traverse T1 and T2 up to n

5. Read the text for current node of T1 and T2

6. Compare both text

7. If text are note equal than current node has difference

8. And if text are equal call same algorithm recursively for

child

The steps of execution of Pseudo code of Tree Comparison is
given in Figure 11.

International Journal of Computer Applications Technology and Research
Volume 3– Issue 4, 254 - 262, 2014, ISSN: 2319–8656

www.ijcat.com 261

Figure 11. Steps of Execution of Pseudo of Tree comparison
execution.

4. Implementation
The Application which is discussed in this paper is
developed using the C# language and .NET platform.
The Typical web Page considered for an experiment is as
shown in figure 12. The old Web page and the modified
Webpage is given as input to the system.

Old Web Page Modified Web Page

SubTree Highlighted Output
For Selected Zone of Comparison

Figure 12. Web page Change detection for Selected Zone

5. Conclusion

The Web Page Detection system is for selection
zone using generalized Technique detects changes for
selected zone. It detects changes for text and attributes
at minute level. We have developed generalized tree
comparison Algorithm for selected zone. It helps us to
reduce browsing time. It shows the output of change
text in red color. This saves the time of detecting the
changes in the entire Web page. Such system is useful
as described above for stock broker, job seekers who
are continuously monitoring the changes in the web
pages.

6. References

[1] Naveen Kumar Varshney, Dilip Kumar Sharma “A
Novel Architecture and Algorithm for Web Page
Change Detection.

[2] Naveen Kumar Varshney, Dilip Kumar Sharma “An
Enhanced Architecture and Algorithm for Web Page
Change Detection”

[3] Shobhna, Manoj Chaudhary “A Survey on Web
Page Change Detection System Using Different
Approaches” International Journal of Computer
Science and Mobile Computing”, Vol. 2, Issue. 6,
June 2013, pg.294 – 299.

[4] Imad Khoury, Student Member, IEEE, Rami El-
Mawas, Student Member, IEEE, Oussama El-
Rawas, Elias Mounayar, and Hassan Artail1,
Member, IEEE “An Efficient Web Page Change

International Journal of Computer Applications Technology and Research
Volume 3– Issue 4, 254 - 262, 2014, ISSN: 2319–8656

www.ijcat.com 262

Detection System Based On An Optimized
Hungarian Algorithm”.

[5] Copernic Technologies, Copernic Tracker Product,
2006,
http://www.copernic.com/en/products/tracker/tracke
r-features.html.

[6] M Aignesberger WebSite-Watcher Product,
http://www.aignes.com, 2006.

[7] Wysigot, http://www.wysigot.com.
[8] Song, Bhowmick. “BioDIFF An Effective Fast

Change Detection for Genomic and Proteomic
Data” in a Proceedings of the Thirteenth ACM
conference on Information and knowledge
management., Pp146- 147, Nov. 2004.

[9] G. Cobena, S. Abiteboul, and A. Marian, “Detecting
Changes in XML Documents,” Proc. 18th Int’l
Conf. Data Eng., pp. 41-52, 2002.

[10] S. Chakravarthy, Subramanian, “Automating
change detection and notification of web pages” ,
Proc 17th Int’l Conf. on DEXA, IEEE , 2006.

[11] D.Yadav,A.K. Sharma, J.P. Gupta”Change
Detection In Web page” in a proceeding of 10th
international conference on information
technology,pp 265-270,2007.

[12] G. Srishti, Rinkle R. A. “An efficient for web page
change detection” , IJCA, VOL. 48, NO.10, June.

[13] Marouane Hachicha and Jerome Darmount,
Member IEEE Society “A Survey of XML Tree
Patterns” IEEE Transaction on

[14] S. Flesca, E. Masciari “Efficient and effective Web
change detection” Data & Knowledge Engineering
46 (2003) 203–224.

[15] Raihan Al-Ekram, Archana Adma, Olga Baysal
“diffX: An Algorithm to Detect Changes in Multi-
Version XML Documents”.

[16] Latifur Khan, Lei Wang and Yan Rao “Change
Detection of XML Documents Using Signatures” .

[17] Documents Gr´egory Cob´ena, Serge Abiteboul
Am´elie Marian“Detecting Changes in XML”.

[18] Monika Yadav Mr. Pradeep Mittal “Web Mining:
An Introduction” Volume 3, Issue 3, March 2013
ISSN: 2277 128X International Journal of
Advanced Research in Computer Science and
Software Engineering.

[19] M.Srividya, D.Anandhi M.S.Irfan Ahmed “Web
Mining and Its Categories – A Survey”
International Journal Of Engineering And
Computer Science ISSN:2319-7242 Volume 2 Issue
4 April, 2013 Page No. 1338-1345 .

[20] Geeta R. Bharamagoudar, Shashikumar G.Totad,
Prasad Reddy PVGD “Literature Survey on Web
Mining” IOSR Journal of Computer Engineering
(IOSRJCE) ISSN: 2278-0661, ISBN: 2278-8727
Volume 5, Issue 4 (Sep-Oct. 2012), PP 31-36.

[21] Mr Dushyant Rathod “A Review On Web Mining”
IJERT ISSN:22780181 Vol.1 Issue 2 April 2012.

[22] Manoj Pandia, Subhendu Kumar Pani, Sanjay
Kumar Padhi,Lingaraj Panigrahy, R.Ramakrishna
“A Review Of Trends In Research On Web Mining”
International Journal of Instrumentation, Control &
Automation (IJICA), Volume 1, Issue 1, 2011

[23] Adam Rae, Vanessa Murdock, Adrian Popescu,
Hugues Bouchard “Mining the Web for Points of
Interest”.

[24] Chapter 5 “Proposed Method for Web Page Change
Detection”.

[25] Web Mining— Concepts, Applications, and
Research Directions Jaideep Srivastava, Prasanna
Desikan, Vipin Kumar Chapter 21.

