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Abstract: Service-Oriented Architecture (SOA) considered as one of the important architectural styles to build future applications. This 

architecture consists of a group of homogenous and autonomous components that interact with each other to accomplish a task. However, 

performance prediction of SOA based applications is regarded one of the complex tasks that face software developers and engineers. 

This paper presents a novel approach for SOA performance prediction at early stages of SDLC by using Machine Learning technique. 

Firstly, annotated UML diagrams are presented. Secondly, translate the UML diagrams into (QNM) model in order to extract 

performance indices such as Response Time, Throughput, and Utilization. Finally, machine learning technique used to predict the 

application model performance. The prediction result “Risk” means design does not meet customer requirement and “No Risk” means 

the design satisfies the customer requirements. Machine learning technique predicts the performance based on the training set against 

the extracted test set of the application model performance indices. The new method has many advantages, such as reducing time, scale 

with large system size, and avoiding problems before the service put into the production environment. To illustrate our approach, we 

present the results of a simple practical example. 
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1. INTRODUCTION 
Service-Oriented Architecture (SOA) provides excellent 

features for designing distributed internet applications include 

reusability, flexible configuration, and easy implementation. 

The Service defined as functional logical part that performs a 

unique business task. This task could be for consumer or for 

another service connected to it. Many challenges come with 

SOA as a new architecture style. Firstly, challenges related to 

finding methods to analyze and predict the Quality of Services 

(QoS) such as security, performance, service availability, and 

standardization during designing time. Secondly, challenges 

related to applying QoS standers on SOA based applications 

such as centralization and service integrity in environment 

exhibits autonomous, encapsulation, and privacy [1].  

The proposed approach considers the report “Risk” if the 

performance indices extracted from the architectural design 

does not meet the customer requirements and “No Risk” if the 

performance indices satisfy the customer requirements. We 

assume that customer has non-functional requirements such as 

response time, resource utilization, and throughout. According 

to ISO 9126 all the previous requirements called Performance 

[9].  

Generally, there are two types of software performance 

prediction, at the design time (Model-based) and at running 

time. Our proposed approach concerns about model-based 

performance prediction from the initial stages of Software 

Development Life Cycle (SDLC). Model based performance 

prediction has many advantages such as low cost, easy, and 

practical.  

The proposed framework consists of three major steps as 

presented in Fig.1.  

 

 

 

 

 

First step: annotated UML diagrams will be used to describe 

software system as follows: 

 Use Case diagrams represent workloads applied to the 

system [7]. 

 Deployment diagrams describe available physical 

resources where computations take place. 

 Activity diagrams describe both the order in which 

resources are used, and corresponding service demand. 

 

Second step: mapping annotated UML model into Queuing 

Network Model (QNM) to simulate the SOA application and 

generates performance indices.  

 

Final step: take the output of the Queuing Network Model 

(QNM) as a new instance and provides it to the machine 

learning, then based on the training set the machine learning 

algorithm will predict whether there will be a risk or no risk if 

we implement the SOA application by current performance 

indices.   

The reminder of this paper structured as follows section 2 

presents the related work. Section 3 explains the term SOA. 

Section 4 demonstrates SPT UML profile (Schedule, 

Performance, and Timing). Section 5 states the translation from 

UML to QNM. Section 6 defines QNM. Section 7 presents the 

machine learning technique. Finally, section 8 presents the case 

study. 
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Figurer 1. The Proposed Framework 

 

2. RELATED WORK 
[Ganapathi, 2009] proposed a statistical machine learning 

technique to predict and optimize multi components and parallel 

system utilization and performance. The proposed technique 

extracts correlation between a workload’s pre-execution 

characteristics or configuration parameters, and post-execution 

performance observations [2].  The correlation has been used for 

performance prediction and optimization.  

[Dubach, 2009] used machine-learning to efficiently explore the 

compiler architecture design. The researcher firstly, developed 

two performance models and used them to increase efficiency of 

searching the design space of micro-architecture [3]. These 

models accurately predict performance metrics such as cycles or 

energy, or a tradeoff of the two. 

[Malhotra et. al, 2012] have employed machine learning to 

measure the maintainability, number of CHANGE is observed 

over a period of three years on dataset [4]. Change can be defined 

as the number of lines of code which were added, deleted or 

modified.    

[Mohanty et. al, 2012] have employed machine learning 

technique to classify and rank web services [5]. The researchers 

proved that by using Naïve based Bayesian network the 

classification performs better than other techniques.  

[Ipek et. al, 2005] used multilayer neural networks trained on 

input data from executions on target platform. The approach is 

useful for predicting many aspects of performance, and it capture 

full system complexity. The study focuses on the high 

performance, parallel application SMG2000 [6]. The model has 

predicted performance within error 5% - 7% error across a large, 

multidimensional parameter space.  
 

3. SERVICE-ORIENTED 

ARCHITECURE (SOA) 
Service-oriented architecture (SOA) is an architectural style 

where a system comprises of three major components: First, 

Service Provider is the service or entity that accepts and executes 
request from service user and service registry. Second, 

Service User is an application or service that requires a service. 

Third, Service Registry is a network based directory that contains 

available services [8, 9]. An architectural style characterizes the 

types of components, connectors, and configuration. Fig 2 

explores SOA architecture.  

Web service technology is a type of the implementations of SOA. 

Web Service consists of many published standards such as 

Service Oriented Architecture Protocol (SOAP) and Web Service 

Description Language (WSDL).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Service-Oriented Architecture 

 

 

4. UML SPT PROFILE 
UML profile for scheduling, performance, and Time has been 

released by OMG standard. The basic objectives of the UML 

profile are to declare the requirements for system performance 

and a tool to model physical time, timing specifications, timing 

services, logical and physical resources, concurrency and 

scheduling, software and hardware infrastructure, and their 

mapping [10].   

UML profile provides an extension of the UML standard with 

special modeling components and their semantics. The main 

components of profile are new Stereotypes. Stereotype provides 

a style of extending UML by declaring simple terms and using 

them to explain UML components and cooperation in a system.  

Stereotypes are implemented to existing UML entities, such as 

class and association, and increase semantics of these elements 

with newly predefined meaning. 

 

5. UML TRANSLATION INTO QNM 
Based on the roles stated by (Simonetta et. al, 2004), we use 

algorithm named UML-QNE to translate an annotated UML 

diagrams specification into QNM. UML model components are 

translated into the corresponding QNM model elements as 

follows. From actors in Use Case diagrams we identify the type 

of QNM model.  From activity diagrams we derive the network 

topology that is the behavior of the classes of users circulating 

through the system. Finally, each node in the Deployment 

diagrams defines a service center. The mapping 

between UML and performance model element is 

illustrated in Fig.3.    
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Figure 3: Mapping UML into QNM 

 

6. QUEUINGNETWORK MODEL (QNM) 
Queuing network model is a mathematical model used in 

computer systems performance analysis to predict quality 

attributes of a system and its parts [11]. The basic parts of QNM 

are Queues and Service Center. A queue is a buffer, which 

similar to any queuing system. A service center provides services 

to the queue’s customer. Each service center has an associated 

queue containing jobs to be processed by that service center.  

To get performance characteristics for any individual service 

center, two kinds of information must be presented. Firstly, the 

average rate R at which new jobs arrive in service center. 

Secondly, the average time taken by service center S to perform 

one job.  Based on this information the following quality of 

services could be calculated: 

 Utilization of each Service Center   (Ui) =  R * Si 

 Average Response Time                  (Ri) = Si /(1-ui) 

 Average Number of users at each Service Center 

(Pi)= ui/(1 – ui) 

From above equations it is possible to make calculations for 

latency, throughput, and highly utilized service centers. 

 

7. MACHINE LEARNING 
Machine learning is the capability of the computer program to 

acquire or develop new knowledge or skills from existing or non 

existing examples for the sake of optimizing performance criteria 

[12].   Software engineers and researchers have been started 

using machine learning techniques in the area of quality of 

service classification and prediction. Moreover, machine 

learning has proved it is efficiency to asset and optimizes model 

based performance prediction.  

Machine learning can be categorized into two groups that are, 

supervised and unsupervised machine learning. These two 

learning categories are associated with different machine 

learning algorithms which represent how the learning method 

behaves [12]. 

 

7.1 Supervised Learning 

Supervised learning comprises of algorithms that reason from 

externally supplied instances to produce general hypothesis 

which then make predictions about unseen instances. Moreover, 

with supervised learning there is presence of the outcome 

variable to orient the learning process. There are many machine 

learning algorithms for supervised learning such as Support 

Vector Machine (SVM), K-Nearest Neighbor, and Random 

Forests. 

 

7.2 Unsupervised Learning  

Opposite to supervised learning where there is presence of the 

outcome variable to orient the learning process, unsupervised 

learning builds models from data without predefined example 

[12]. This means no guidance is available and learning must 

perform heuristically by the algorithm examining different 

training data.  

 

8. A CASE STUDY 
Step 1: UML Annotated Diagrams 

In order to make our proposed approach of a model based 

performance prediction more understandable, an example is 

represented describing a commerce system. 

The application scenario starts as the client browses the system 

to obtain information about products and prices via commercial 

server. The commercial server connects the database server in 

order to get the information required and complete the task. 

Moreover, the client can use the system to purchase products via 

the commercial server. In this step, the commercial server 

connects the online shopping mall server to make the purchase 

operation and accomplish the job. 

 

 
 

Figure 4. The system described by Use Case Diagram 

 

 

 

 
Figure 5. The System described by Deployment Diagram 
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Figure 6.The System described by Activity Diagram 

Fig.4 shows the annotated Use Case diagram. Each actor in a use 

case diagram may represent a stream of requests arriving at the 

system. There may be an unlimited sequence of requests (open 

workload) stereotyped as <<OpenUser>>, or a fixed population 

of users requiring service from the system (closed workload) 

stereotyped as <<ClosedUser>>. The tagged value can be linked 

with use case diagrams: 

 PApopulation specifies the total number of requests circulating 

in the system. 

Fig.5 represents the annotated deployment diagram. Deployment 

diagrams are used to model the physical resources available in 

the system. Each resource is represented by a node in the 

deployment diagrams. Each node which must be stereotyped as 

<<node>> represents a processor with a given scheduling policy. 

The tagged values can be link with deployment diagrams: 

PAschedpolicy denotes the scheduling policy of the processor, 

which can be one of: First in First out (FIFO), or Last in First out 

(LIFO), or Processor Sharing (PS). 

PArate denotes the processing rate of the processor or time taken 

by the processor to complete a task. 

PAservers denotes the number of processors simultaneously 

executing the requests.    

Fig.6 shows the annotated Activity diagram. Activity diagram 

describes the workloads and the physical resources available in 

the system, also it’s specifies how the resources are used in the 

meaning of computations are performed in the system.  

Each action state of an activity diagram, stereotyped as 

<<ServiceCenter>>, represents a computation which requires 

service to one resource. Tagged values below can be specified to 

convoy information for making up the performance model: 

PAresource denotes the name of the resource from which service 

is requested, which called node in Deployment diagram.  

PAoccurrence denotes the inter-arrival time of this service 

request. It can be used with Queuing Network Model to specify 

open queuing model. 

 

Step 2: Transformation to QNM 

Based on Table 1 notation algorithm 1 is used to translate 

annotated UML elements into the corresponding QNM 

components. Each node in the Deployment diagram defines a 

service center. Use case diagram used to categories the type of 

model (open or closed), and from Activity diagrams network 

topology is derived.  

 
Algorithm 1: QNM Generation Algorithm 1 

 
for all Deployment diagram node Ri, i = 1 .. N do 

 Si := New Service Center 

 µi := 1/PAserviceTime(Ri) 

 NSi:= PAservers(Ri) 

end for 

Let C ← 0 

for all Actor A do 

    Initialize routing matrix 𝐏 
𝐜 for class C to zero 

    AD := Active diagram associated to A 

    for all Transition t from action state ai to aj of                              

    Activity diagram AD do 

 Rk := PAhost(ai) 

 Rl  := PAhost(aj) 

 𝑃𝑘,𝑙 
𝑐 := PAprob(t) 

    end for   

if A is a ClosedUser then 

Set class C as a closed chain with PApopulation (A) 

requests 

else 

     Set class C as an open chain 

     for all Action state a of Activity diagram AD do 

 if PAoccurrence(a) is defined then 

      Ri :=PAhost(a) 

      𝜆𝑖
𝑐:= PAoccurrence(a) 

              end if 

       end for 

    end if  

        Let C ← C + 1 {New Customer Class} 

end for 

 
 

Table1. Notation used for Algorithm1 

N Number of nodes in the UML deployment 

diagram. 

Si ith  service center 

𝜇𝑖 Service rate of service center Si 

𝜆𝑖
𝐶 Arrival rate of class C customers at service 

center Si 

NSi Number of servers in service center Si 

PC N × N routing matrix of class C customers 

 
Step 3: QNM Analysis 

The translation algorithm works on the annotated UML 

diagrams, and starts mapping the UML into QNM model. Fig7 

presents the derived QNM from the Use case, Deployment, and 

Activity diagrams of respectively, assuming that the Activity 

diagram is associated to an actor stereotyped <<OpenUser>>.  

We used a tool for drawing and calculating performance indices 

from queuing networks called Performance Evaluation 

and Prediction SYstem for Windows platforms (WinPEPSY-

QNS). 
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Figure 7. QNM - Output of the Transformation Algorithm 

 
WinPEPSY-QNS analyzes the QNM and gets the result by 

using Mean Value Analysis (MVA) algorithm.  

The analysis of the QNM of Fig. 7 provides a set of average 

performance indices that include utilization, throughput, 

response time, and latency. Table 2 shows numerical results for 

the set of parameters value for the whole system. The 

performance analysis can provide indication for possible 

system modification and further software performance 

evaluation can be iterated by choosing a different set of 

parameters value, to be inserted in the UML annotation. 

 

Table 2. Performance Result for the QNM Fig. 7 

Utilization (Ui) 0.4 

Throughput (Xi) 10.0 

Response Time (Ri) 1.42 

 

Step 4: Machine Learning Prediction 
According to above performance indices presented on table 2 we 

will consider the results as a test set. To complete the test set we 

assumed availability, success-ability, reliability, and number of 

operations performed by the web service the complete test set 

will be as Table 3. We used Waikato Environment for 

Knowledge Analysis (WEKA) as a tool for machine learning. In 

order to classify the test set as “Risk” or “No Risk”.  
 

Table 3. The Complete Test Set 

Utilization (Ui) 0.4 

Throughput (Xi) 10.0 

Response Time (Ri) 1.42 

Availability (Avi) 100 

Success-ability (Sui) 100 

Reliability (Rei) 100 

Operation (Opi) 9 

Class No risk 

 

Utilization (Ui) means total amount of resources required in 

order to complete a task, Throughput (Xi) is a total number of 

invocations for a given period of time, Response time (Ri) is 

the time taken to send a request and receive a response, 

Success-ability (Sui) measured as number of response / number 

of request messages, Operation (Opi) is the number of 

operations performed by the web service.  

Step 5: The Result 

We have used a training set contains 166 web services and their 

measurements collected by (Al-Masri, 2007) to train our model. 

After feeding the test set on the machine learning the result 

confirms our claim that there will be “No Risk” if we apply the 

current web service architecture. The result is promising as we 

get relative absolute error 15.4 % fig.8.    

 

 
Figure8. Result 

 

 

9. CONCLUSION 
In this paper, we proposed a new technique to predict the 

performance of service oriented architecture based applications. 

The study focuses on web service as implementation of SOA. 

This approach avoid the needs of transforming UML model into 

queuing network at each time we want to predict the performance 

at early stages of development process.  

We extract utilization, response time, throughput, and number of 

operations from the architectural description after mapping 

application architecture into QNM model. Machine learning 

technique has been used to predict is there will be risk if we 

implement the web service with same indices or no risk. 

As a result the prediction model gives error percentage 15.4 % 

which considered as promising result.     
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