
International Journal of Computer Applications Technology and Research

Volume 4– Issue 4, 308 - 311, 2015, ISSN:- 2319–8656

www.ijcat.com 308

A Detailed Study on Prevention of SQLI attacks for Web

Security

Navjot Verma

Center of IT and Management

Punjabi University Regional

Mohali India

Amardeep Kaur

Center of IT and Management

Punjabi University Regional

 Mohali India

Abstract: SQL injection is the major susceptible attack in today’s era of web application which attacks the database to gain unauthorized

and illicit access. It works as an intermediate between web application and database. Most of the time, well-known people fire the SQL

injection, who is previously working in the organisation on the present database. Today organisation has major concern is to stop SQL

injection because it is the major vulnerable attack in the database. SQLI attacks target databases that are reachable through web front.

SQLI prevention technique efficiently blocked all of the attacks without generating any false positive. In this paper we present different

techniques and tools which can prevent various attacks

Keywords: SQL Injection, SQL injection Prevention, web application, database, vulnerable.

1. INTRODUCTION
Web applications are being in a much wider area these days,

online shopping, online banking and social networking is some

of the key users of these [21]. All these users have the utmost

priority for their privacy and security and these are the most

vulnerable while being online. To secure these applications two

phases are implied. These phases are:

1.1 Data base layer: The database layer provides an

object vision of database information by applying schema

semantics to database records, so isolating the upper layers of

the directory service from the underlying database system. The

database layer is an inner boundary that is not exposed to users.

No database admission calls are made directly to the Extensible

Storage Engine; as an alternative, all database right to use is

routed through the database layer [23].

1.2 Application layer: refers to techniques of shielding

Web applications at the application layer (last layer of the

seven-layer OSI model) from nasty attacks that may picture

private information. Protection is applied to the application

layer especially to protect against illegal access and attacks.

Advantages of Web Security:

1. Internet sites are well-liked targets for crackers, and even

without mean forces security holes can permit accidents

happen.

2. A secure network is a good network.

3. This doesn't make it easy to take part in a web site. Scripts

may require access to sensitive information, or at least

information you don't want in the public domain before you are

prepared.

SQL injection is one of the most serious threats to the data

security of all web applications. SQL injection attack allows

attackers to gain control of the original query, illegal access to

the database and extract or transform the database [1]. The main

cause of SQL injection vulnerabilities is: attackers use the input

support to attack strings that contains special database

commands. An SQLIA occurs when an attacker change the

SQL control by inserting new keywords [2]. A successful SQLI

attack hinder privacy integrity and availability of information

in the database. In most of cases, SQL Injection is used to

initiate the denial of service attack on web applications. The

strictness of the attacks depends on the role or account on which

the SQL statement is executed.

An attacker needs to know loop holes in the application before

launch an attack. Attackers use: input format, timing,

performance and error message to decide the type of attack

suitable for an application. Database is the heart of many web

applications, basis for which database more and more coming

under great number of attacks. SQLIAs occur when data

provided by the user is incorporated directly in the query and is

not appropriately validated.

1.3 Vulnerability
Table 1 present the most common security vulnerabilities found

in web programming languages [21].

Table 1: Types of Vulnerabilities

Vulnerability

Types

Description

Type I No clear distinction between

data types received as input in

the programming language

used for the web application

development

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 4– Issue 4, 308 - 311, 2015, ISSN:- 2319–8656

www.ijcat.com 309

Type II

Delay of operation analysis

till the runtime phase where

the current variables are

considered rather than the

source code expressions.

Type III The validation of the user

input is not definite. Attacker

taking advantages of

insufficient input validation

can utilize mean code to

conduct attacks.

Type IV Puny concern of type

specification in the design. A

number can be used as a

string or vice versa.

2. TYPES OF SQLI ATTACK
The SQL injection attacks can be performed using a variety of

techniques. Some of them are specified as follows:

First Order Attack: Attackers aim the database with

strings attached to an input field and receives the answer

immediately. Such attacks which exploit the lack of validation

in the input field parameter are known as first order attacks

[21].

Second Order Attack: An attacker attacks the

database with inserting mean queries in a table but implement

these queries from other actions [21].

Tautology Attack: Conditional operators are used by

the attackers in the SQL queries such that the query always

evaluates to TRUE [1,2,6,10].

For example, SELECT * FROM employee WHERE name = ''

OR '1'='1';

Logically Incorrect Queries: An illegal query used

by the attacker to glance at the whole database [1,2,6,10].

For example, "SELECT * FROM employee WHERE id =" +

name + ";"

Piggy-backed Query: In this attack, attacker tries to

add on supplementary queries but terminates the first query by

inserting “;” [1,2,7].

For example, SELECT * FROM employee WHERE id=1;

DROP TABLE employee;

Inference: The main goal of the inference based attack is

to change the activities of a database or application. There are

two well-known attack techniques that are based on inference:

blind injection and timing attacks

Timing attack: In these types of attack an attacker

observe the database delays in database response and gather the

information. WAITFOR, IF, ELSE, BENCHMARK [1,2]

cause delay in database response.

For example, SELECT * FROM employee WHERE id=1-

SLEEP(15);

Blind injection: In this situation an attacker performs

queries that have a Boolean result [1].

For example: SELECT * FROM employee WHERE id = '1008'

AND 1=1;

Alternate Encoding: Attacker modifies the injection

query by using alternate encoding such as hexadecimal, ASCII

and Unicode [1,2] .

For example: SELECT * FROM employee WHERE

id=unhex('05'); .

Union Query: An attacker makes use of vulnerable

parameters and attach injected query to the safe query by the

word UNION and get data about other tables from the

application.

For example: Select * from company where name=‟ ‟ union

select * from employee –„and Password=‟anypwd‟

Stored Procedure [10]: A stored procedure is a cluster

of Transact-SQL statements compiled into a single execution

plan. As stored procedure could be coded by programmer,

attacker can execute these built in procedures.

3. RELATED WORK
There are many ways to prevent SQL injection attacks

[1,2,7,14,15]. The various types of existing techniques for

preventing SQL injection are as follows:

Negative Tainting, [1] Preventing SQL injection

attack using negative tainting provide uniqueness by using

linked list. This approach works on the untrusted strings and

provides good response time for large database programs. This

approach consists of (1) Identifying hot spot from the

application (2) To find out SQL injection attack using negative

tainting. (3) Inserting newly identified SQL injection attacks to

get better accuracy.

Positive Tainting, [2] Positive tainting focuses on the

recognition and marking of trusted strings. It uses the concept

of syntax sensitive estimation. This system works in following

manner- (1) Identifying trusted data source. (2) Allowing only

data from such sources to suit a SQL keyword or operator in

query strings. Trusted data strings can be more readily known.

WASP (Web Application SQL injection Preventer) tool have

implemented this approach. This approach is defined at the

application level and it requires no alteration of the runtime

(JVM) system, and it imposes low execution overhead. Positive

tainting used to check SQLIA at the runtime. WASP tool works

fruitfully but it blocked over 12000 attacks without generating

false positives.

Input Filter Technique, [4] An SQL injection attack

is interpreted differently on different databases. This technique

provides the general solution to solve this problem. Depending

on number of space, double dash and single quote the count

value of the input value is increased by 1 because default count

of the query is 1. Then the fixed count value and dynamically

generated count compared to check SQL injection attack. But

this technique has limitation that it works on single quote,

double dash and space only.

Query Transformation and Hashing, [7] This

technique uses a lightweight method to prevent SQL injection

and works in two ways. Fist is to convert the query into

structural form than parameterized form. Second apply an

appropriate hash function to create unique hash key for each

transformed query by using suitable hash function. Only the

hash keys are stored instead of transformed query. A primary

index can be created for fast and proficient searching. As this

approach is proficient but it does not prevent second order SQL

http://www.ijcat.com/
https://technet.microsoft.com/en-us/library/aa174792(v=sql.80).aspx#sql:stored_procedure

International Journal of Computer Applications Technology and Research

Volume 4– Issue 4, 308 - 311, 2015, ISSN:- 2319–8656

www.ijcat.com 310

injection attacks and this approach can neither be applied to

prevent XSS attacks.

SQL-ID, [14]
 Kemalis and Tzouramanis have suggested novel specification-

based methodology for the detection of exploitations of SQL

injection vulnerabilities in “Specification based approach on

SQL Injection detection” [3]. A Java-based application

monitors by this system and identify SQL injection attacks in

real time.

Dynamic Candidate Evaluations Approach,

[15]
Bisht et al. propose CANDID. It is a Dynamic Candidate

Evaluations method for automatic prevention of SQLInjection

attacks. This structure dynamically extracts the query structures

from every SQL query location which are intended by the

developer (programmer). Hence, it solves the issue of manually

modifying the application to create the prepared statements.

AMNESIA,[16] - AMNESIA approach for tracing SQL

input flow and generating attack input, JCrasher for generating

test cases, and SQLInjectionGen for identifying hotspots. The

experiment was conducted on two Web applications running on

MySQL1 1 v5.0.21. Based on three attempts on the two

databases, SQLInjectionGen was found to give only two false

negatives in one attempt. This framework is efficient

considering the fact that it emphasizes on attack input

precision. Besides that, the attack input is properly matched

with method arguments. The single disadvantage of this

approach is that it involves a number of steps using different

tools.

SQLrand,[17] SQLrand approach is proposed by Boyd

and Keromytis. To implement this approach, they use a proof

of concept proxy server in between the Web server (client) and

SQL server; they de-randomized queries received from the

client and sent the request to the server. This de-randomization

framework has 2 main advantages: portability and security. The

proposed scheme has a good performance: 6.5 ms is the

maximum latency overhead imposed on every query.

SQLIA Prevention Using Stored

Procedures,[18] Stored procedures are subroutines in

the database which the applications can make call to . The

prevention in these stored procedures is implemented by a

combination of static analysis and runtime analysis. The

stagnant analysis used for commands identification is achieved

through stored procedure parser and the runtime analysis by

using a SQLChecker for input identification. This paper has

proposed a combination of static analysis and runtime

monitoring to fortify the security of potential vulnerabilities.

Adaptive algorithm,[19]
This method consists of the top features of parse tree validation

technique and code conversion method. This technique parse

the user input and verify whether its prone, if there is any

chance of vulnerability present then code conversion will be

applied over the input. This paper had also surveyed various

SQL injection methods and techniques against SQL injection.

It has also presented the algorithm to apply for the vulnerable

code.

4. COMPARISON
The main goal for future improvement is to improve the

efficiency of the technique by reducing false positive. Table 2,

[1] shows a chart of the schemes and their prevention

capabilities against various SQL injections attacks and précis

the results of this comparison.

Table 2: comparison of various prevention schemes and various

attacks

5. CONCLUSION
With above data in place it can be reviewed that database

security is major issue in today life. This paper presents a

survey report on the SQL injection attacks and how attacks are

implemented on the database using SQL queries. We first

identified the various types of SQL injection attacks and then

we examine various prevention techniques. Finally a

comparative analysis of various types of prevention techniques

of SQL injection is presented.

6. REFERENCES
[1] A. S. Gadgikar, “Preventing SQL injection attacks

using negative tainting approach,” in IEEE International

Conference on Computational Intelligence and Computing

Research, 2013, pp. 1–5.

[2] W. G. J. Halfond, A. Orso, and P. Manolios, “Using

positive tainting and syntax-aware evaluation to counter SQL

injection attacks,” in Proceedings of the 14th ACM SIGSOFT

International Symposium On Foundations of Software

Engineering - SIGSOFT ’06/FSE-14, 2006, pp. 175–185.

[3] S. Roy, A. K. Singh, and A. S. Sairam, “Detecting

and Defeating SQL Injection Attacks,” International Journal of

Information and Electronics Engineering., vol. 1, no. 1, pp. 38–

46, 2011.

[4] S. Bangre and A. Jaiswal, “SQL Injection Detection

and Prevention Using Input Filter Technique,” International

Journal of Recent Technology and Engineering (2012), vol. 1,

no. 2, pp. 145–150, 2012.

[5] E. Bertino, A. Kamra, and J. P. Early, “Profiling database

applications to detect SQL injection attacks,” in Conference

Proceedings of the IEEE International Performance,

Computing, and Communications Conference, 2007, pp. 449–

458.

Schemes Tautol

ogy

Logically

Incorrect

Queries

Union

Query

Stored

Procedu

re

Piggy

Backed

Queries

Inference

Attack

Alternating

Encoding

Attack

AMNESIA YES YES YES NO YES YES YES

SQLrand YES NO NO NO YES YES NO

CANDID YES NO NO NO NO NO NO

SQLGuard YES NO NO NO NO NO NO

SQLIPA YES YES YES NO YES YES YES

Negative

Tainting

YES YES YES NO YES YES YES

Positive

Tainting

YES YES YES YES YES YES YES

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 4– Issue 4, 308 - 311, 2015, ISSN:- 2319–8656

www.ijcat.com 311

[6] A. Sadeghian, M. Zamani, and A. A. Manaf, “A

Taxonomy of SQL Injection Detection and Prevention

Techniques,” in 2013 International Conference on Informatics

and Creative Multimedia, 2013, pp. 53–56.

[7] D. Kar and P. Suvasini, “Prevention of SQL Injection

Attack Using Query Transformation and Hashing,” in

Proceedings of the 2013 3rd IEEE International Advance

Computing Conference, IACC 2013, 2013, pp. 1317–1323.

[8] R. Dharam and S. G. Shiva, “Runtime Monitors for

Tautology based SQL Injection Attacks,” IEEE Int. J. Cyber-

Security Digit. Forensics, vol. 53, no. 6, pp. 253–258, 2012.

 [9] P. Kumar and R. Pateriya, “A Survey on SQL

injection attacks, detection and prevention techniques,” in

Computing Communication & Network Technologies, 2012,

no. July, pp. 1–5..

[10] X. Fu, X. Lu, and B. Peltsverger, “A static analysis

framework for detecting SQL injection vulnerabilities,” in 31st

Annual International Computer Software and Application

Conference, 2007, no. Compsac, pp. 87–96.

 [11] S. Thomas, L. Williams, and N. Carolina, “Using

Automated Fix Generation to Secure SQL Statements [Short

presentation paper],” 2007.

[12] K.-X. Zhang, C.-J. Lin, S.-J. Chen, Y. Hwang, H.-L.

Huang, and F.-H. Hsu, “TransSQL: A Translation and

Validation-Based Solution for SQL-injection Attacks,” in 2011

First International Conference on Robot, Vision and Signal

Processing, 2011, pp. 248–251.

 [13] K. Kemalis and T. Tzouramanis, “SQL-IDS : A

Specification-based Approach for SQL-Injection Detection,”

pp. 2153–2158, 2008.

[14] P. Bisht, “CANDID : Dynamic Candidate Evaluations for

Automatic Prevention of SQL Injection Attacks,” ACM Int. J.

Comput. Sci., vol. V, no. 2, pp. 1–38, 2010.

[15] G. T. Buehrer, B. W. Weide, and P. A. G. Sivilotti,

“Using Parse Tree Validation to Prevent SQL Injection

Attacks,” no. September, pp. 106–113, 2005.

[16] S. W. Boyd and A. D. Keromytis, “SQLrand :

Preventing SQL Injection Attacks,” IEEE Appl. Cryptogr.

Netw. Secur.,2004,vol. 3089, pp. 292–302..

[17] W. G. J. Halfond and A. Orso, “Preventing SQL

injection attacks using AMNESIA,” in Proceeding of the 28th

international conference on Software engineering - ICSE ’06,

2006, p. 795.

[18] Z.Su and G. Wassermann, “The Essence of Command

Injection attacks in Web Applications”, 33rd ACMSIGPLAN,

SIGACT Symposium on Principles of Programming

Languages, Charleston, South Carolina, USA, 2006,pp. 372-

382.

[19] Ashish John “SQL Injection Prevention by Adaptive

Algorithm,” IOSR Journal of Computer Engineering, 2015,Vol

17,pp. 19-24

 [20] Diksha Upadhya “A Survey on SQL Injection -

Vulnerabilities Attacks and Prevention Techniques”.

[21] K. S. Chavda, “International Journal of Advance

Engineering and Research,” Sci. J. Impact Factor, vol. 1, no.

12, pp. 173–179, 2014.

[22] A. John, A. Agarwal, and M. Bhardwaj, “An adaptive

algorithm to prevent SQL injection,” An Am. J. Netw.

Commun., vol. 4, pp. 12–15, 2015.

[23] https://technet.microsoft.com/en-

us/library/cc961800.aspx

http://www.ijcat.com/
https://technet.microsoft.com/en-us/library/cc961800.aspx
https://technet.microsoft.com/en-us/library/cc961800.aspx

