
International Journal of Computer Applications Technology and Research

Volume 5–Issue 10, 648-653, 2016, ISSN:-2319–8656

www.ijcat.com 648

Proposing a Scheduling Algorithm to Balance the Time
and Energy Using an Imperialist Competition Algorithm

Arman Alizadeh

 Department of Computer

Science and Research Branch

Islamic Azad University, Kish, Iran

Ali Harounabadi

Department of Computer

Islamic Azad University

 Central Tehran Branch, Iran

Mehdi Sadeghzadeh

 Department of Computer

 Islamic Azad University

 Mahshahr,Iran

Abstract: Computational grids have become an appealing research area as they solve compute-intensive problems within the scientific

community and in industry. A grid computational power is aggregated from a huge set of distributed heterogeneous workers; hence, it

is becoming a mainstream technology for large-scale distributed resource sharing and system integration. Unfortunately, current grid

schedulers suffer from the haste problem, which is the schedule inability to successfully allocate all input tasks. Accordingly, some tasks

fail to complete execution as they are allocated to unsuitable workers. Others may not start execution as suitable workers are previously

allocated to other peers. This paper presents an imperialist competition algorithm (ICA) method to solve the grid scheduling problems.

The objective is to minimize the makespan and energy of the grid. Simulation results show that the grid scheduling problem can be

solved efficiently by the proposed method.

Keywords: Grid computing, scheduling, imperialist competition algorithm (ICA), Task Assignment, Meta-heuristic, independent task

scheduling.

1. INTRODUCTION
Many applications involve the concepts of scheduling, such as

communications, routing, production planning and task

assignment in multi-processor system. Most problems in these

applications are categorized into the class of NP-complete or

combinatorial problems. This means that it would take amount

of computation time to obtain an optimal solution, especially for

a large-scale scheduling problem. A large variety of approaches

have been applied to scheduling problems, such as genetic

algorithms (GAs) [1], simulated annealing (SA)[2], particle

swarm optimization (PSO) [3], ant colony optimization (ACO)

[4], Queen-Bee Algorithm [5], tabu search (TS) [6], and various

combinations of these [7, 8, 9, 10, 11] to produce better results

in reasonable time.. This paper applies the imperialist

competition algorithm to job scheduling problems in grid

computing. Grid is a service for sharing computer power

and data storage capacity over the Internet. The grid

systems do better than simple communication between

computers and aims ultimately to turn the global network

of computers into one vast computational resource. Grid

computing can be adopted in many applications, such as

high performance applications, large-output applications,

data-intensive applications and community-centric

applications. These applications major concern to

efficiently schedule tasks over the available processor

environment provided by the grid. The efficiency and

effectiveness of grid resource management greatly depend

on the scheduling algorithm [12]. Generally, in the grid

environment, these resources are different over time, and

such changes will affect the performance of the tasks

running on the grid. In grid computing, tasks are assigned

among grid system [13]. The heuristic ICA [14], proposed in

2007, was inspired by the sociopolitical evolution of imperial

phenomena and has been used for solving many optimization

problems in continuous space. This paper proposes a discrete

version of ICA for solving the independent task scheduling

problem in grid computing systems. The present paper converts

ICA from a continuous state algorithm to a discrete state

algorithm by changing the assimilation stage. The resulting

algorithm is compared with SA and other heuristic algorithms

and is shown to produce better results than these. This algorithm

simultaneously considers makespan and completion time by

using appropriate weights in the mean total cost function.

Furthermore, the dynamic situations are not considered in

this paper.

2. BACKGROUND

2.1 Scheduling Method
The scheduling task issue is considered as a tough challenge

which is composed of n tasks and m resources must be processed

by a machine and does not top until the end of the performance.

We used ETC matrix model described in [15]. The system

assumes that the expected execution time for each task i, on

every resource j is predetermined and is located in the matrix

ETC, ETC [i, j]. Here, makespan is regarded as the maximum

completion time in CompleteT [i, j], calculated in the following

equation (1) [16]:

Makespan = Max (completeT [i,j]) 1 ≤I≤ N, 1 ≤j≤ M (1)

In the above equation, CompleteT[i, j] is equal to the time when

the task i on the source j is completed and it is calculated in

equation (2):

completeT [i,j] = Ready[M] + ETC[i,j] (2)

2.2 Imperialist Competition Algorithm
The imperialist competition algorithm (ICA) proposed by

(Atashpaz -Gargari and Lucas 2007) is a mathematical modeling

of imperialist competitions. Similar to other evolutionary

algorithms, the ICA algorithm begins with a number of initial

random populations. Each random population is called a

country. The possible solutions for ICA are called countries. A

number of the best elements of the population are selected as

imperialists, others which are governed by Imperialists are

called colonies. By applying an assimilation policy in the

direction of various optimization axes, imperialists gain the

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5–Issue 10, 648-653, 2016, ISSN:-2319–8656

www.ijcat.com 649

favor of their colonies. The total power of each empire is

modeled as the sum of the imperialist power and a percentage of

the mean power of its colonies. After the initial formation of

empires, imperialistic competition starts among them. Any

empire that has no success in the imperialistic competition with

nothing to add to its power is eliminated from the competition.

So the survival of an empire depends on its power to assimilate

competitor’s colonies. As a result, the power of greater empires

is gradually increased in imperialistic competitions and weaker

empires will be eliminated. Empires have to make

improvements in their colonies in order to increase their power.

For this reason, colonies will eventually become like empires

from the point of view of power, and we will see a kind of

convergence. The stopping condition of the algorithm is having

a single empire in the world.

3. PREVIOUS RESEARCH
A large number of heuristic algorithms have been proposed for

grid scheduling. Most of them try to minimize the maximum

completion time of tasks, or makespan. Each task has its own

deadline, and we try to decrease the makespan in order to

prevent tasks from failing to execute because of their deadlines.

That is, decreasing the makespan results in the ability to execute

more tasks in the network. It also helps to provide efficient

resource allocation and energy utilization.

The hierarchic genetic strategy (HGS) algorithm was proposed

in [22] for scheduling independent tasks in a grid system and is

implemented in dynamic grid environments in batch mode. This

algorithm simultaneously considers optimization of flow time

and makespan. The authors generate root nodes based on two

other algorithms: longest job to fastest resource and shortest job

to fastest resource (LJFR-SJFR) [23] and minimum completion

time (MCT) [24], and they generate the rest of the population

stochastically. In LJFR-SJFR, initially, the highest workload

tasks are assigned to machines that are available. Then the

remaining unassigned tasks are assigned to the fastest available

machines. In MCT [24], tasks are assigned to machines that will

yield the earliest completion time.

Balanced job assignment based on ant algorithm for computing

grids called BACO was proposed by [20]. The research aims to

minimize the computation time of job executing in Taiwan

UniGrid environment which focused on load balancing factors

of each resource. By considering the resource status and the size

of the given job, BACO algorithm chooses optimal resources to

process the submitted jobs by applying the local and global

pheromone update technique to balance the system load. Local

pheromone update function updates the status of the selected

resource after job has been assigned and the job scheduler

depends on the newest information of the selected resource for

the next job submission. Global pheromone update function

updates the status of each resource for all jobs after the

completion of the jobs. By using these two update techniques,

the job scheduler will get the newest information of all resources

for the next job submission. From the experimental result,

BACO is capable of balancing the entire system load regardless

of the size of the jobs. However, BACO was only tested in

Taiwan UniGrid environment.

4. THE PROPOSED ALGORITHM
The proposed algorithm for task scheduling is a combination of

ICA and GELS which is used for scheduling of independent

tasks in computational grid environment. According to ICA’s

high performance in scheduling problems, a simple method for

country representation is taken into consideration firstly. Natural

numbers are used to encrypt countries. The value in each country

is resource number ranging from 1 to M, where M is the number

of all resources. Fig.1 illustrates an example of countries

representation where 9 tasks are assigned to 3 resources. As

Figure depicts, for example task 4 (T4) is running on resource

1(R1).

Fig. 1. Country representation in ICA-GELS Algorithm.

Fig. 2. The amount of consumed energy for each task time unit.

Pj,i is considered as a 1*M array where M is the number of

resources. The value in each entry represents the amount of

consumed energy for executing a task. Fig 2 shows a sample

matrix where the consumed energy per each task time unit in

second resource (R2) is 250 J. The initial population of countries

in the ICA is generated randomly. A random number between 1

and M is generated which is the resource number and the

intended task will be execute on it. The independent task

scheduling problem includes M tasks and M machines. Each

task should be processed by one of the machines in way that

makespan get minimum. Proposed algorithm takes two QoS

parameters such as energy and time limitation into

consideration. Each task can be execute on one resource and will

not stop until execution is completed. Our algorithm applies

ETC matrix model. Considering that proposed scheduling

algorithm is static, it is assumed that expected execution time is

determined for each task on each resource at prior and it is stored

in ETC [i, j]. Also, Ready time [M] determines the time that

machine M completes the previous assigned task. Makespan is

considered as maximum completion time (completeTime (i, j)),

which is computed using equation (3).

Makespan = Max (completeT [i, j]) (3)

completion _time [i, j] is the time when task i completes on

resource j and it is computed using equation (4) and TransferC

and wait (i, j) are respectively the data transfer time and waiting

execution time.

completeT (i, j) = ETC [i, j] + TransferC + wait (i, j) (4)

The objective of scheduling in the proposed algorithm is to map

each task to each resource in way that makespan and total loosed

tasks get minimum. For example, ETC matrix (table (1))

presents 9 tasks and 3 resources.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5–Issue 10, 648-653, 2016, ISSN:-2319–8656

www.ijcat.com 650

Table 1. ETC matrix

Task/Resource P1 P2 P3

T1 2 3 1

T2 2 5 3

T3 1 3 4

T4 4 5 6

T5 8 5 6

T6 3 5 4

T7 4 2 4

T8 4 6 7

T9 2 3 1

4.1 The objective and fitness function in

proposed algorithm
The main idea behind task scheduling is to minimize the

makespan, which is the total execution time for all tasks. To

solve task scheduling by ICA, a country is more suitable that

minimize makespan and total consumed energy for all tasks.

Equation (5) describes the first fitness function for each country.

Also, equation (6) and (7) compute the energy consumption for

each solution.

Fitness1 (Ci) = α ×
1

FTime (Ci)
+ (1 − α) ×

1

E (Ci)
 (5)

E (Ci) = ∑ ∑ Ei,j
N
i=1

M
j=1 (6)

Ei,j = (Pj,i−Ij)ETC [i , j] (7)

Where E is the total consumed energy to execute all tasks in

country i and Pj,i is the consumed energy for executing task i on

resource j. Also Ij is the consumed energy of resource i when the

resource is ideal. It can be concluded from equation (5) that

when the consumed enregy and makespan are minimzied, the

fitness function is maxmized and shows the more suitable

solution to the problem. Also the coeffiction α determines the

impact of each parameter on fitness value. For example Fig. 3

illustrates a solution to the scheduling problem. Considering the

ETC matrix in table (1), the makespan equals to 12. Fig. 3 shows

the total scheduling length for countries.

Fig. 3. Total scheduling length for countries

4.2 Second fitness function
As stated before, the main objective of task scheduling is to

minimize the makespan. It is possible to have several countries

with similar total scheduling time but with different workload

on their resources. Therefore, second fitness function takes this

factor into consideration. Such that, after achieving solutions

with minimum makespan, second fitness function will be

applied to them aiming at acquiring balanced solution in terms

of workload. To gain maximum balanced workload, the fitness

value should be computed for resources. To achieve the value of

balanced workload we are have to compute sum of standard

deviation. It is clear that we should compute the fitness for

resources firstly. Equation (8) shows the second fitness function

for balanced workload computing.

Fitness2(Counteryi) =
1

RUi
 (8)

At fires maximum exaction time is specified using equation (9).

E = Max {Tij + τij} (9)

To compute E’s value in highest path, we use Tij and τij which

are equal to data transmission time RMS and processing time,

respectively. If we use ui to represent fitness value of resource i

for execting task j, we have:

ui =
Tij+τij

E
 (10)

To compute fitness value for each resource we use the equation

process which is used for computing E value. In other words, the

value of E is specified firstly, then using equation (10) the fitness

value for each resource is computed. To compute standard

deviation, we are have to compute total fitness value at first.

Consider the two solutions for task scheduling in Fig. 2 and Fig.

3, the scheduling total time for this solutions is equal to 12.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5–Issue 10, 648-653, 2016, ISSN:-2319–8656

www.ijcat.com 651

Fig. 4. Total scheduling time with respect to load balancing.

4.3 The assimilation and revolution

operations in our proposed algorithm (ICA)

4.3.1 Assimilation operator
Historically, the assimilation policy was developed with the

purpose of moving the culture and social

structure of colonies toward the culture of the central

government. In the proposed algorithm some cells

approximately 40% (Duki, et al. 2010) of the Imperialist array

are randomly selected (cells 1, 4, 8, and 9 in the Fig. 5 are

imperialist and others are colony).

Fig. 5. Assimilation operator representation

4.3.2 Revolution operator
To perform this operation, two cells are first selected in the

colony in a random manner and their values are exchanged. This

stages (random exchange or revolution operation) is repeated

based on the percentage of the total number of tasks. If the new

colony is better than the old one, it replaces the old colony;

otherwise, this procedure is repeated. This operation is

illustrated in Fig. 6.

Fig. 6. Revolution operator representation

The Pseudo-code of the proposed algorithm is shown below.

Step 1 : Initialization

Step 2 : 2.1. Generate the k number of random country with

length n

 2.2.Setting the Maximum: Maximum-Time (Mt)

 and Maximum-energy (Me) according to the

user’s requirement.

Step 3 : 3.1. Create initial empires.

Steo 4 : 4.1. Assimilation & Revolution

 4.2. Assimilation: Colonies move towards

imperialist.

 4.3. Revolution: Random change occur in the

charcteristics of some countries.

Step 5 : Position exchange between a colony and imperialist

Step 6 : Compute Makespan and energy for all country

Step 7 : 7.1. Imperialistic Competition

 7.2. Eliminate the powerless empires. Weak

empires lose their power their power gradually

and they will finally be eliminated.

Step 8 : Check stop condition satisfied.

Step 9 : The best country from the imperialist competitive

algorithm as a best solution select.

Figure 7. Pseudo-code of the proposed algorithm.

5. DISCUSSION
In this section, aiming at evaluating performance of the proposed

work, the simulation results will be presented. Our simulations

are conducted on OPNET Modeler simulator (Modeler 2009).

We have conducted several simulations to verify the

effectiveness of our proposed algorithms. Our experiments are

conducted in a system equipped with 4 GB of RAM and 1600

MHz CPU which is run Windows Xp. The performance of the

proposed algorithm is compared with several task scheduling

algorithms considering the simulation parameters demonstrated

in table (2). The iteration parameter shows that to achieving the

application execution time using existing algorithms, 100

iteration are performed and the average of the values are

computed. Also the initial value for parameters which are used

in ICA and GA algorithms are shown in table (2), respectively.

Table (2). Initial values for parameters for algorithms

ICA

Assimilation rate 2

Revolution rate 0.1

α rate 0.8

Neighborhood

radius (R)
0.1

Maximum

velocity

Sized of the

input tasks

Initial velocity
Between 1 and

Max Velocity

Constant

Gravitation (G)
6.672

GA
P-Crossover 0.85

P-Mutation 0.02

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5–Issue 10, 648-653, 2016, ISSN:-2319–8656

www.ijcat.com 652

Figure 8. Comparison of makespan of algorithms

Fig.9 compares the algorithms in terms of consumed

energy. As results show the consumed energy increases as

time passes. The consumed energy for our algorithm is

lower than other algorithms.

Fig. 9. Comparing consumed energy for task execution

6. CONCLUSIONS
In the proposed method, the researchers imperialist competitive

algorithm which has been used for scheduling in grid

environment. The proposed algorithm, in which a weighted

objective function is used considering the degree of importance

of time and energy of user’s projects, gives more freedom for

specifying the time and energy of users’ projects. In the use of

this algorithm, similar to the objective function, the time and the

energy, along with their weight, are considered based on the

user's perspective. The purposes of the proposed scheduling are

to minimize completion time and energy of implementation of

tasks for different tasks of users simultaneously.

The proposed scheduling is compared with two algorithms of

GA and SA with regard to the parameters of time and energy.

The results are investigated based on cost and energy requests in

different charts. They show that if we have limited number of

resources as well as high number of duties, the proposed

scheduler has the best performance compared to the other three

schedulers in reducing the overall time and energy of

scheduling. The results of experiments show that the imperialist

competitive algorithm can reach a high performance regarding

creation of a balance between energy and tasks implementation

scheduling. Further research can be conducted with regard to the

practice of resource allocation to works in the proposed

algorithm through using an approach based on fuzzy logic and

using of fuzzy inference system.

7. REFERENCES

[1] J. Kołodziej and F. Xhafa, Integration of task abortion and

security requirements in GA-based meta-heuristics for inde

pendent batch grid scheduling, Computers &Mathematics

withApplications 63(2) (2012), 350–364.

[2]A.Kazem, A.M. Rahmani and H.H. Aghdam, A modified

simulated annealing algorithm for static scheduling in grid

computing, Proceedings of the 8th International Conference on

Computer Science and Information Technology (2008),623-

627.

[3]Garcia-Galan, R.P. Prado and J.E.M. Exposito, Fuzzy

scheduling with swarm intelligence-based knowledge

acquisition for grid computing, Engineering Applications of

Artificial Intelligence 25(2) (2012), 359–375.

[4] L. Wei, X. Zhang, Y. Li and Yu Li, An improved ant

algorithm for grid task scheduling strategy, Physics Procedia,

Elsevier 24 (2012), 1974–1981.

[5] Z. Pooranian, M. Shojafar, J.H. Abawajy and A.

Abraham,An efficient meta-heuristic algorithm for grid

computing,Journal of Combinatorial Optimization (JOCO)

(2013),doi:10.1007/s10878-013-9644-6.

[6] Z. Pooranian, A. Harounabadi, M. Shojafar and J.

Mirabedini, Hybrid PSO for independent task scheduling in grid

computing to decrease makespan, International Conference on

Future Information Technology IPCSIT 13,Singapore(2011),

435–439.

[7] S. Benedict and V. Vasudevan, Improving scheduling of

scientific workflows using Tabu search for computational grids,

Information Technology Journal 7(1) (2008), 91–97.

[8] R. Chen, D. Shiau and S. Lo, Combined discrete particle

swarm optimization and simulated annealing for grid computing

scheduling problem, Lecture Notes in Computer Science,

Springer 57 (2009), 242–251.

[9] M. Cruz-Chavez, A. Rodriguez-Leon, E. Avila-Melgar, F.

Juarez-Perez, M. Cruz-Rosales and R. Rivera-Lopez, Genetic-

annealing algorithm in grid environment for scheduling

problems, Security-Enriched Urban Computing and Smart Grid

Communications in Computer and Information Science,

Springer 78 (2010), 1–9.

[10] Z. Pooranian, A. Harounabadi, M. Shojafar and N. Hedayat,

New hybrid algorithm for task scheduling in grid computing to

decrease missed task, world academy of science, Engineering

and Technology 79 (2011), 924–928.

[11] F. Xhafa, J. Gonzalez, K. Dahal and A. Abraham, A

GA(TS) hybrid algorithm for scheduling in computational grids,

Hybrid Artificial Intelligence Systems Lecture Notes in

Computer Sci- ence, Springer 5572 (2009), 285–292.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5–Issue 10, 648-653, 2016, ISSN:-2319–8656

www.ijcat.com 653

[12]Lee, L.T., Tao, D.F., Tsao, C.: An Adaptive Scheme for
Predicting the Usage of Grid Resources. Comput.Electr.
Eng.33(1), 1–11 (2007)

[13]Salman, A., Ahmad, I., Al-Madani, S.: Particle Swarm
Optimization for Task Assignment Problem.
Microprocessors and Microsystems 26, 363–371 (2002)

[14] E. Atashpaz-Gargari and C. Lucas, Imperialist
competitive algorithm: An algorithm for optimization
inspired by imperialist competitive, IEEE Congress on
Evolutionary computation, Singapore (2007), 4661–4667.

[15] Braun, T. D., Siegel, H. J , A taxonomy for describing

matching and scheduling heuristics for mixed machine

heterogeneous computing systems, Proceedings of the 17th IEEE

Symposium on Reliable Distributed Systems, pp. 330335, 1998.

[16] Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.,"BGSA:

binary gravitational search algorithm". Nat. Comput. 9(3), 727–

745, 2010.

[17] J.Kolodziej and F.Xhafa, Enhancing the genetic-based

scheduling in computational grids by a structured hierarchical

population, Future Generation Computer Systems,Elsevier

27(8)(2011),1035-1046

[18] A.Abraham,R.Buyya and B.Nath,Nature's heurustics for

scheduling jobs on computational grids, Proceeding of the 8th

IEEE International Conference on Advanced Computing and

Communications, India(2008), 1-8.

[19] C.Weng and X.Lu, Heuristic scheduling for bag-of-tasks

applications in combination with QOS in the computational grid,

Future Generation Computer Systems 21(2)(2005),271-280.

[20] Chang, R. S., Chang, J. S., Lin, P. S., “Balanced Job

Assignment Based on Ant Algorithm for Computing Grids”,

The 2nd IEEE Asia-Pacific Service Computing Conference, pp.

291295,2007.

http://www.ijcat.com/

