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Abstract: Water stress is one of the most important growth-limiting factors in crop production around the world, water in plants is 

required to permit vital processes such as nutrient uptake, photosynthesis, and respiration. Drought stress in plants causes major 

production losses in the agricultural industry worldwide. There is no sensor commercially available for real-time assessment of health 

conditions in beans. Currently, there are several methods to evaluate the effect of water stress on plants and commonly practiced 

method over the years for stress detection is to use information provided by remote sensing. Studies exist which determined the effect 

of water stress in plants grown under the different watering regime, while other studies explore the performance of the artificial neural 

network techniques to estimate plant yield using spectral vegetation indices.  This review recognizes the need for developing a rapid 

cost-effective, and reliable health monitoring sensor that would facilitate advancements in agriculture 
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1. INTRODUCTION 
Water stress is one of the most important growth-limiting 

factors in crop production around the world. Water in plants is 

required to permit vital processes such as nutrient uptake, 

photosynthesis, and respiration. Drought stress in plants 

causes major production losses in agriculture industry 

worldwide. Monitoring of health and detection of the draught 

in plants and trees is critical for sustainable agriculture.  

To the best of my knowledge, there is no sensor commercially 

available for real-time assessment of health conditions in 

beans. Currently, there are several methods to evaluate the 

effect of water stress on plants. A promising and commonly 

practiced method over the years for stress detection is to use 

information provided by remote sensing. The adaptation of 

remote sensing and other non-destructive techniques could 

allow for early and spatial stress detection in vegetables.  

Studies exist which determined the effect of water stress in 

plants grown under the different watering regime. Other 

studies explore the performance of the artificial neural 

network techniques to estimate plant yield using spectral 

vegetation indices. It describes the currently used technologies 

that can be used for developing a ground – based sensor 

system to assist in monitoring health and draught in plants 

under field conditions.  

These technologies include normalization difference 

vegetation index, leaf temperature and microclimatic 

information, automatic segmentation for scanned images to 

visualize features by specific color hues and intensities. The 

method involves classification of pixels, determined by leaf 

regions with or without color. Artificial Neural Network is 

applied in a self – organizing Kohonen network and a linear 

perceptron output layer. Other researchers have used ANOVA 

analysis of the timing of draught stress detection in plants. 

 

2. BACKGROUND 
In order to assess the vitality of a plant, it is necessary to 

capture the required features which describe the plant's state. 

For instance, the bending angle of the leaves towards the 

ground might be a measure of the drought stress level of the 

plant. The reason is the loss of turgor pressure caused by the 

decline of water in the leaves. This effect forces the leaves to 

bend down, due to gravity. Features like this can be used in 

biological models in order to describe how certain feature 

values correspond to the health state of a plant. Unfortunately, 

relevant features are often difficult to measure using remote 

systems.   There are two main difficulties: 

There are two main difficulties:  

Firstly, the measurement system must provide sufficient data 

for the extraction of the features. For example, a single 2D 

image of a bean plant taken by a simple digital camera would 

not be able to obtain information about the bending angles 

since most leaves would be in a position where it is 

impossible to capture the required information. Important key 

points like the tip or the stem of a leaf might not be visible in 

all cases due to an unfavorable point of view or overlapping 

leaves. Taking several pictures from different points of view 

might solve this problem but raises others, e.g. how to identify 

same leaves in different images.  

Secondly, the features must be extracted from the 

measurement data. Thus, potent imaging algorithms are 

required which are able to detect relevant parts of the plant 

and infer complex features from the measurement data. 

However, this is not a trivial task since the data is often very 

complex. In the case of laser scanners, the measurement data 

might consist of point clouds with thousands of 3D points. 

Thus, the measurement data can be very large and full of 

redundancies.  

Nevertheless, some relevant information might be missing, 

e.g. because of occlusions or other negative effects. 

3. IMAGE PROCESSING TECHNIQUES 

3.1 Existing Techniques 
There exist several methods for plant measurement. In [1], a 

short overview of several methods to acquire structural data is 

given: There are contact measurement systems, for instance, 

magnetic digitizers, which consist of a signal receiver and 

pointer, allowing the user to record the 3D spatial coordinates 

of the pointer within a [certain] hemisphere [...] from the 

receiver" [1, p. 17]. Nevertheless, magnetic digitizers are 
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prone to disturbances caused by iron, which might be a 

problem in greenhouse environments.  

To overcome this problem, sonic digitizers can be used. 

However, those are sensitive to wind fluctuations and are 

therefore not suited for applications in the field [1, p. 17]. 

Besides this contact measurement systems, there is also a big 

range of non-contact measurement systems. Apart from a 

sheet of light laser scanning, which was used for this thesis 

and is therefore explained further in section 3.1, there exist 

systems based on time of light, volumetric intersection, stereo 

vision and other methods [1, p. 17_]. 

Time of light systems works by emitting a laser beam which 

is backscattered by the plant. The returning beams are then 

captured via a photodiode in the receiver optics. The distance 

between the plant and the optics can then be estimated by 

measuring the time interval between emitting and receiving 

the laser beam. In volumetric intersection systems, the surface 

of a plant is captured by recording the silhouette of the plant 

against a monochromatic background, which is then 

discarded. By turning the plant and taking silhouettes from 

different angles, the 3D surface of the plant's outline can be 

reconstructed. Obviously, this method has problems with 

occlusions or overlapping plant parts. 

Stereo vision systems use two cameras, positioned at a 

distance, which record the same scene. From the shift of 

corresponding points in both views, the 3D position of these 

points in real-world coordinates can be computed. 

All of the mentioned systems are used to capture the surface 

and therefore the architecture of a plant. To acquire data about 

functional aspects of plant growth, for instance, water 

transport or pigment content, other imaging techniques are 

used. 

Chaerle [2] gives an overview of such imaging techniques 

which are used to monitor plant health. Those include 

fluorescence, luminescence, thermal imaging, magnetic 

resonance and reactance measuring. These imaging 

techniques are already proven to be useful for vitality 

assessment. 

Please use a 9-point Times Roman font, or other Roman font 

with serifs, as close as possible in appearance to Times 

Roman in which these guidelines have been set. The goal is to 

have a 9-point text, as you see here. Please use sans-serif or 

non-proportional fonts only for special purposes, such as 

distinguishing source code text. If Times Roman is not 

available, try the font named Computer Modern Roman. On a 

Macintosh, use the font named Times.  Right margins should 

be justified, not ragged. 

3.2 Plant Stress Detection Techniques 
As it was shown in the previous section, there exists a wide 

range of different imaging systems, each being useful for 

different data acquisition tasks. However, further techniques 

are necessary to detect valuable information in the data and 

extract it reliably. Depending on the task, each has a varying 

degree of difficulty, which is illustrated in the following 

examples. 

In the experiments described by Romer et al. [3], 

hyperspectral images of barley and corn plants have been 

analyzed in order to detect drought stress in a very early stage, 

i.e. before the plant is damaged. The experiments have been 

performed on the level of single plants in the case of barley, 

whereas corn plants were measured directly in the field. 

The data consisted basically of histograms of the 

hyperspectral plant images. To assess the vitality state of the 

plants, Romer et al. used an unsupervised classification 

method called simplex volume maximization. The key idea of 

this method is to find archetypal samples in the data which 

represent the most extreme cases of plant growth, e.g. very 

healthy or very stressed plant samples.  

This is achieved by comparing the distances between all data 

points and declaring the samples as archetypes which span the 

greatest volume of the distance around all other samples. 

Afterwards, all non-archetypal samples can be expressed as a 

convex combination of the archetypes, where the coefficients 

relate to the similarity of a data sample to a respective 

archetype. The benefit of this is that the resulting classes can 

be interpreted by humans although they were learned using an 

unsupervised learning technique. Nevertheless, at least with 

respect to the barley dataset, a human expert was necessary in 

order to assert the correctness of the archetypes. 

The method was compared to visual classification and to the 

usage of vegetation indices, e.g. calculating the ratio of 

ground which is covered by biomass. Romer et al. achieved 

good results. In the barley experiment, stress was detected 5 

days earlier than with visual classification and 4 days faster 

than with the tested vegetation indices. 

As Romer et al. [3, p. 879] mention, despite several laboratory 

studies that have shown a relationship between the amount of 

water in the leaf and the spectral reactance in the optical 

region [4], at canopy level the determination of water content 

presents some difficulties, mainly due to the large reactance 

variation among leaves with the same water status [5], 

structural changes associated with loss of turgor [6] or small 

reactance differences at different levels of water stress". 

Therefore, it is difficult to detect drought stress in single 

plants using reactance imaging. 

Moreover, since the category of plants is grown to be used for 

medical products, it is necessary to control the state of every 

single plant regularly and very often, e.g. every day. In the 

corn experiment of Romer et al., however, the measurement 

system took one minute to acquire an image of the size 

_2x1.5m, which is quite slow if a large field with hundreds of 

plants has to be processed. 

 

4. DISCUSSION 

4.1 State of the Art in Plant Drought Stress 

Algorithms 
A different kind of approach is taken by Seatovic [10], who 

presents a system for the recognition and treatment of broad-

leaved dock, which is a highly competitive and persistent sort 

of weed. This system uses an infrared laser scanner and a 

high-resolution smart camera which are mounted on a carrier 

vehicle. Besides the sensor system the vehicle carries an 

herbicide spraying component which is able to treat certain 

parts of the captured area, if a weed plant is detected. The 

vehicle can be moved over a field with a speed of 1ms 1 while 

weed plants are detected and treated in real-time. In the image 

data, weed plants are identified by finding contiguous surface 

patches. This is done with a simple edge detection algorithm 

[10, p. 174f]. The surface patches are then compared to 

objects of a plant database with respect to simple features like 

shape and texture. The main benefit of Seatovic's approach is 

that features like shape can be derived from the raw 

measurement data. Therefore, they can be computed fast 
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enough to be used in a real-time system. Nevertheless, he 

reports that only 62-91% of the weed plant surface have been 

detected in field tests. This detection rate was sufficient in his 

project since the radius of the herbicide spraying nozzles was 

big enough to treat all weed plants even if not all leaves have 

been detected.  

However, other application contexts might require a higher 

accuracy. For example, a system for treatment of vermin 

might need higher accuracy rates since any missed bugs could 

spread across already treated plants. 

Both approaches report good results on the level of whole 

plant stands, whereas a reliable detection of single leaves is 

difficult. A reason might be that both approaches use quite 

simple features. Although they differ in terms of data 

acquisition and feature extraction methods, both approaches 

use simple features which rather describe the images instead 

of the plants which are depicted.  

Consequently, it is difficult to derive information about 

certain plant parts like leaves since they are on a higher level 

of detail. If that information is required, further advanced 

feature extraction techniques are necessary. Unfortunately, the 

segmentation of image data to corresponding plant parts and 

the automatic calculation of certain features is a challenging 

task due to its complexity. As van der Heijden [11, p. 19, p. 

22] stated, “automatic feature extraction is still in its infancy" 

and consequently “plant features still have to be extracted 

interactively since current software is not yet capable of fully 

automatic extraction of plant features in complex images".  

Since an advanced feature extraction is the bottleneck of 

many applications, there are some recent approaches to a 

solution. Paulus et al. [12] provide an algorithm to classify 

parts of point cloud data, e.g. to distinguish leaves from stems. 

Their approach is based on surface feature histograms, which 

consist of local geometric point features, e.g. neighborhood 

characteristics. By differentiating among different classes of 

histograms, different plant parts can be detected in the point 

cloud. They confirmed their methods by successfully applying 

them on grapevine and wheat plant organs, where 

classification accuracy rates up to 98% could be reached. 

In the work of Balfer [13], a skeletonization algorithm is 

explained, which uses semantic annotations to extract a 

precise 3D model of complex grapevine stem systems. From 

this model, structural features can be extracted, e.g. the 

lengths of the peduncles. However, the approach requires 

expert knowledge in order to find and model suitable semantic 

annotations 

4.2 Existing Methodological Approaches 
Dornbusch et al. [14] propose a method to extract 

morphological traits of a plant, e.g. width and length of stem 

segments and leaves by fitting an architectural model to point 

cloud data. This method is quite promising since it provides 

meaningful features which can be interpreted by human 

experts. However, a crucial step, namely segmenting the point 

cloud of a whole plant into smaller segments (i.e. the actual 

detection), is still performed manually in Dornbusch's 

approach. 

Camargo [15] uses histogram-based approaches to segmenting 

2D images of cotton plants, e.g. to find spots which were 

damaged by bugs or infected with diseases. The approach 

works well and is feasible, nevertheless, it is only applicable 

to 2D image data and is therefore not suitable to extract 3D 

features like bending angles of leaves. 

Given that meaningful features of plant growth can be 

extracted from sensor data, the actual assessment of plant 

vitality can be performed by assigning certain classes or 

measures of plant health to patterns or constellations of 

attribute values. In many agricultural applications, standard 

machine learning techniques are used to deal with this kind of 

task. 

Mucherino [16] provides a survey of how techniques such as 

k-nearest neighbor, artificial neural networks or support 

vector machines have been successfully applied to solve 

agricultural problems. The fields of interest include prediction 

of wine quality, soil quality analysis, recognition of pig 

sounds and the detection of meat and bone meal in feedstuffs 

for animals. Unfortunately, stress classification of plants is 

none of the discussed problems.  

In the field of plant classification, support vector machines are 

widely used. Rumpf et al. [18] use support vector machines to 

distinguish diseased from non-diseased hyperspectral sensor 

data of sugar beet leaves. They mainly use simple features 

like vegetation indices, i.e. the ratio of ground which is 

covered by biomass. However, since it is based on 

hyperspectral data, their approach allows for early disease 

detection. 

Camargo [9] uses support vector machines to classify visual 

symptoms of cotton plant diseases, i.e. visual damages of the 

leaves. As it was already mentioned, his approach relies on 

2D images which are searched for relevant segments using 

color intensity histograms. Therefore, the approach is only 

feasible if no other information, e.g. 3D geometry, is required. 

4.3 Approaches for Morphological Design 

of Leaf Model 
Most of the mentioned approaches tend to avoid the 

bottleneck of feature extraction by reducing it to a minimum, 

either by using global image data like spectral histograms or 

by only extracting simple features like texture, color or width 

and length values of simple shapes. However, those simple 

features only describe visual properties of the images but lack 

a semantic relation to the growth behavior of the plants which 

are depicted. 

More desirably, the features should correspond directly to 

information which is interesting for a human expert. 

Therefore approaches that links to the work of Uhrmann et al. 

[5], in which a morphological leaf model should be studied to 

extract feasible growth parameters. The difference to other 

approaches is that the model should consider complex 

features, e.g. attributes describing the bending behavior of the 

leaf along certain axes. In contrast to simple attributes like 

length or width of the leaf, this complex attributes should be 

directly correlated with the vitality state of the plant. 

5. CONCLUSION 
Since using a leaf model is a very new technique, a model 

should be validated so as to analyse the leaf model features 

and to show which of them are relevant for the description of 

drought stress with respect to plants. 

Furthermore, classification techniques should be examined for 

the evaluation of the model leaf features. Many of the 

mentioned approaches use support vector machines for the 

classification process since they provide excellent results in 

most cases. However, there are different classification 

techniques which are easier to interpret by human experts. For 

example, decision trees or linear regression provide an easier 

model in terms of comprehensiveness. 
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Therefore, research to evaluate several classifiers with respect 

to the task of learning the features provided by the leaf model 

can be considered. For instance, if decision trees turn out to 

provide classification results comparable to support vector 

machines, they should be preferred in a practical application, 

since they are easier to evaluate by non-technical experts, e.g. 

biologists. 

Therefore, a model for the impact of drought stress on plant 

growth can be inferred from measured geometric leaf features 

using machine learning techniques. The features were 

acquired using a measuring system developed at the 

Fraunhofer IIS. The aim was to evaluate which of the 

available features are required to model drought stress and 

whether they are salient to reach a reliable classification 

performance. 

An overview of existing approaches and techniques with 

respect to vitality assessment of plants via remote sensors 

should be discussed. 
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